<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| **A-1** | **Effects of Layer-to-Layer Coupling on the Total-Ionizing Dose Response of 3D-Sequentially Integrated FDSOI MOSFETs**
* S. Toguchi\(^1\), E. Zhang\(^2\), M. Rony\(^3\), X. Luo\(^2\), D. Fleetwood\(^2\), R. Schrimpf\(^2\), M. Alles\(^4\), S. Cheramy\(^4\), P. Batude\(^4\), L. Brunet\(^4\), F. Andrieu\(^4\)
\(^1\)Vanderbilt University, USA
\(^2\)Vanderbilt University, USA
\(^3\)Vanderbilt University, USA
\(^4\)CEA-LETI, France
3D-Sequentially integrated transistors show strong layer-to-layer coupling of total-ionizing-dose responses due to radiation-induced trapped charges in the intermediate dielectric region between upper and lower device layers. |
| **A-2** | **TID Degradation and Low Frequency Noise in 16 nm Bulk FinFETs Irradiated to Ultra-High Doses**
* S. Bonaldo\(^1\), T. Ma\(^1\), S. Mattiazzo\(^2\), A. Baschirotto\(^3\), C. Enz\(^4\), D. Fleetwood\(^5\), A. Paccagnella\(^1\), S. Gerardin\(^1\)
\(^1\)University of Padova, Italy
\(^2\)University of Bergamo, Italy
\(^3\)University of Milano, Italy
\(^4\)EPFL, Switzerland
\(^5\)Vanderbilt University, USA
DC and low frequency noise measurements on 16 nm Si bulk FinFETs irradiated to 1 Grad(SiO\(_2\)) show charge buildup in STI. The TID sensitivity depends on channel length, and fin and finger number. |
| **A-3** | **Proton Irradiation Effects on Spin Orbit-Torque and Spin Transfer-Torque Magnetic Tunnel Junctions**
* O. Coi\(^1\), G. Di pendina\(^2\), O. Garello\(^2\), D. Dangla\(^3\), R. Ecoffet\(^3\), L. Torres\(^4\)
\(^1\)CEA-CNES-CNRS, France
\(^2\)CEA, France
\(^3\)CNES, France
\(^4\)University of Montpellier, LIRMM, CNRS, France
This paper aims to investigate proton irradiation effects on a new class of emerging devices: Perpendicular-Magnetic Anysotropy (PMA) Spin Orbit (SOT) Torque Magnetic Tunnel Junctions (MTJ). |

<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>ORAL PRESENTATIONS</td>
</tr>
<tr>
<td>A-2</td>
<td>ORAL PRESENTATIONS</td>
</tr>
<tr>
<td>A-3</td>
<td>ORAL PRESENTATIONS</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>PA-1</td>
<td>Plasma effects in silicon detectors and the Two Photon Absorption Transient Current Technique</td>
</tr>
<tr>
<td>PA-2</td>
<td>Ion Irradiation Effects on Films and Temperature Sensors for Nuclear Facilities</td>
</tr>
<tr>
<td>PA-3</td>
<td>Simplified Calculations of Radiation Dose-Rate Sensitivity of Bipolar Transistors</td>
</tr>
</tbody>
</table>

PA-1

We analyze plasma effects due to the use of Two Photon Absorption-Transient Current Technique in silicon particle detectors. The Tobe-Seibt model gives a good agreement with the experimental observations.

PA-2

Employing GexSe100-x glasses to monitor temperature using the phase change effect is reported. Materials selection, device structure and a prototype of temperature sensor performance are analysed. Heavy ion irradiation by Xe ions has been studied.

PA-3

A simplified approach to estimating radiation-induced Si-SiO2 interface trap densities, based on steady-state populations of relevant mobile species, is presented. Calculations are consistent with known trends in dose, dose rate, hydrogen content and temperature.
### Paper #	ORAL PRESENTATIONS
B-1 | **Hours-long Transient Leakage Current in MOS Structures after Ultra-High Total-Ionizing-Doses**
H. Dewitte¹, P. Paillet², S. Rizzolo³, C. Marcandella², V. Goiffon¹

¹ISAE-SUPAERO, France
²CEA, France
³Airbus Defense and Space S.A.S, France

The abstract investigates the apparition after irradiation and the fast ambient temperature annealing of a leakage current in p-MOS structures. In particular, it discusses the origin of the current, the effect of the bias, and the dose rate.

### Paper #	POSTERS
PB-1 | **X-Ray Impact on Advanced High Voltage BCD Technology Platform**
M. Basso¹, A. Danesi¹, S. Bertaiola¹, A. Veggetti¹, A. Andreini¹, P. Galbiati¹

¹STMicroelectronics, Italy

xray effects on BCD platform are studied. Strong dependence of the BVdss vs. radiation dose is found. The impact is correlated with the doping: a typical behavior of ReSurF devices and is equivalent to additional charge inside the drain.
This paper explores effects of neutron-induced displacement damage on static and high frequency parameters of three types SiGe:C npn-heterostructure bipolar transistors from the SGB25V BiCMOS technology.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| **C-1** | **Highly Pulsed Electron Beam induced SEU Effects in a SRAM memory**
V. Wyrwoll\(^1\), K. Roed\(^1\), R. Garciaalia\(^2\), B. Delfs\(^3\), A. Coronetti\(^4\), W. Farabolini\(^2\), A. Gilardi\(^2\), R. Corsini\(^2\)
\(^1\)University of Oslo, Norway
\(^2\)European Organization for Nuclear Research (CERN), Switzerland
\(^3\)University Clinic for Medical Radiation PhysicsMedical Campus Pius Hospital, Carl von Ossietzky University, Germany
\(^4\)CERN, Switzerland
Single Event Effects (SEEs) induced by high energy pulsed electrons in a ESA SEU monitor are discussed. Measurements with high energy electrons have been performed at VESPER (CERN) focusing on instantaneous fluxes and dose rates. |
| **C-2** | **SE Performance of D-FF Designs with Different VT Options at Near-Threshold Supply Voltages in a 7-nm Bulk FinFET Technology**
A. Feeley\(^1\), Y. Xiong\(^1\), N. Pieper\(^1\), D. Ball\(^1\), B. Bhuva\(^1\)
\(^1\)Vanderbilt University, USA
SE rates for a 7-nm bulk FinFET node are investigated at NTV supply voltage for different VT options. Results show minimal differences at close-to-nominal voltages, and that LVT had lowest SEU cross-section at NTV. |
| **C-3** | **Heavy-Ion Induced Latent Damage in SiC Power MOSFETs**
C. Martinella\(^1\), P. Natzke\(^2\), R. Garciaalia\(^3\), Y. Kadi\(^3\), U. Grossner\(^2\), A. Javanainen\(^4\)
\(^1\)University of Jyväskylä, CERN, APS - ETH Zurich, Finland
\(^2\)APS - ETH Zurich, Switzerland
\(^3\)CERN, Switzerland
\(^4\)University of Jyväskylä, Finland
Heavy-ions induce latent damage in SiC power MOSFETs, involving the gate oxide and the SiC crystal lattice. The failure site was investigated using plasma SEM-FIB analysis. An overview of the heavy-ion SEEs is given. |

<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
</table>
| **PC-1** | **A Neural Network Approach for Single-Event Latchup Prediction Based on TCAD Simulations in CMOS Technology**
D. Truyen\(^1\), E. Leduc\(^2\), L. Montagner\(^3\), M. Briet\(^2\), A. Collange\(^3\)
\(^1\)MICROCHIP, France
\(^2\)Microchip technology, France |
<table>
<thead>
<tr>
<th>PC-2</th>
<th>Heavy-Ion-Induced Avalanche Multiplication in Low-Voltage Power VDMOSFET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Alberton(^1), N. Medina(^1), N. Added(^1), V. Aguiar(^1), M. Guazzelli(^2), R. Baginski(^2)</td>
</tr>
<tr>
<td></td>
<td>(^1)Universidade de Sao Paulo, Instituto de Fisica, Brazil</td>
</tr>
<tr>
<td></td>
<td>(^2)Centro Universitario FEI, Brazil</td>
</tr>
<tr>
<td></td>
<td>The Lackners' theory for avalanche multiplication provides physical interpretation for the model parameters, although obtaining them through experimental methods is necessary. Comparing computational simulations and experimental measurements, the Lackners' impact ionization coefficients were estimated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC-3</th>
<th>Heavy-ion Induced Gate Oxide Rupture in SiC MOSFETs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X. Zhou(^1), Y. Jia(^1), D. Hu(^1), Y. Wu(^1), Y. Zhao(^1)</td>
</tr>
<tr>
<td></td>
<td>(^1)Beijing University of Technology, China</td>
</tr>
<tr>
<td></td>
<td>This paper presents the experimental characterization of SiC MOSFETs exposed to the heavy-ion irradiation. Different leakage paths related to the drain bias used during the tests are observed, suggesting different damage sites in the devices, which can be further verified through the post-irradiation measurements. TCAD simulations are utilized to explore the failure mechanisms. It is shown that the gate oxide rupture firstly occurs in the middle of the JFET region, while gradually spreads to the channel region with the increase of biased drain voltage, and terminates at the source region eventually. The findings in this paper demonstrate that more attentions should be paid on the heavy-ion induced gate oxide damage before SiC MOSFETs could act as a drop-in replacement of Si-based counterparts in avionic applications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC-4</th>
<th>Micro-Latchup Location and Temperature Characterization in a 7-nm Bulk FinFET Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N. Pieper(^1), Y. Xiong(^1), A. Feeley(^1), G. Walker(^1), B. Bhuva(^1), R. Fung(^2), S. Wen(^2)</td>
</tr>
<tr>
<td></td>
<td>(^1)Vanderbilt University, USA</td>
</tr>
<tr>
<td></td>
<td>(^2)cisco, USA</td>
</tr>
<tr>
<td></td>
<td>Location and temperature characteristics of micro-latchups at the 7-nm bulk FinFET technology is investigated. Thermal images show that micro-latchup locations are spatially clustered and are removed serially when supply voltage is reduced.</td>
</tr>
<tr>
<td>Paper #</td>
<td>ORAL PRESENTATIONS</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| D-1 | **Impact of the Data Retention Threshold Voltage on the Cell-to-Cell SEU Sensitivity of COTS SRAMs**
M. Rezaei¹, A. Arinero panduro², F. Franco², J. Fabero³, H. Mecha⁴, M. Letiche⁵, H. Puchner⁶, J. Clemente⁷
¹Universidad Complutense de Madrid / Departamento de Arquitectura de Computadores y Automática / Facultad de Informática, Spain
²Universidad Complutense de Madrid, Spain
³Complutense University of Madrid, Spain
⁴UCM, Spain
⁵Institut Laue Langevin, France
⁶Infineon Technologies, USA
⁷Universidad Complutense Madrid, Spain

An experimental study on the cell-to-cell sensitivity of 65-nm, 90-nm and 130-nm volatile bulk COTS SRAMs to thermal neutron irradiation is presented. Results show a dependency between VDR and the number of bitflips after irradiation. |
| D-2 | **Assessment of Machine Learning Models in Computing System under Neutron Radiation**
M. Trindade¹, J. Brum¹, L. Maldaner¹, R. Garibotti², L. Ost³, R. Possamai bastos¹
¹Laboratoire TIMA, France
²School of Technology, Pontifical Catholic University of Rio Grande do Sul, Brazil
³Loughborough University, United Kingdom

This paper compares the effectiveness of three machine learning models running on a low-processor processor under neutron radiation. Results suggest that our implementations retain a certain level of effectiveness even without mitigation techniques. |
| D-3 | **Neutron-induced Faults on CNN for Aerial Image Classification on SRAM-based FPGA Using Softcore GPU and HLS**
F. Benevenuti¹, M. Gonçalves¹, E. Pereira jr², R. Galhardo vaz², O. Gonçalez², J. Azambuja¹, F. Lima kastensmidt¹
¹Universidade Federal do Rio Grande do Sul, Brazil
²Departamento de Ciência e Tecnologia Aeroespacial, Brazil

This work evaluates neutron-induced SEUs in image classification all-convolutional neural networks implemented on SRAM-based FPGA: one running in softcore GPU and one in HLS design. Reliability, area, execution time and power are discussed. |

<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 / 3</td>
</tr>
</tbody>
</table>
| PD-1 | Single-Event Transient (SET) sensitivity into the Clock Networks of FPGAs
N. Guibbaud\(^1\), F. Miller\(^1\), T. Colladant\(^2\)
\(^1\)NUCLETUDES, France
\(^2\)DGA, France
In this paper we propose to measure Single-Event Transient (SET) cross section on the clock tree resources of FPGA towards radiations. |
| PD-2 | Characterization of the Total Charge for SET Voltage Pulses in a Commercial 65 nm CMOS Technology
Z. Li\(^1\), L. Berti\(^2\), B. Vignon\(^2\), P. Leroux\(^3\)
\(^1\)IMEC/ KU LEUVEN, Belgium
\(^2\)IMEC, Belgium
\(^3\)Leuven University, Belgium
This paper SET charge measurement circuits and results for a commercial 65 nm CMOS technology. The chip has been tested under the heavy-ion beam with an effective LET from 20.4 to 88.35 MeVcm\(^2\)/mg. |
| PD-3 | Assessment of Attitude Estimation Processing System under Neutron Radiation Effects
T. Kraemer sarzi sartori\(^1\), H. Fourati\(^2\), M. Garay trindade\(^3\), R. Possamai bastos\(^3\)
\(^1\)UGA/TIMA/GIPSA-Lab, France
\(^2\)UGA/GIPSA-Lab, France
\(^3\)UGA/TIMA, France
This paper assesses the effectiveness of an Attitude Estimation (AE) processing system in tolerating neutron radiation-induced soft errors. Radiation tests have been conducted on an advanced AE algorithm running on a processing system neutron radiation. |
| PD-4 | Reliability evaluation of low-power GPU-accelerated System-on-Chip under proton radiation
J. Badia\(^1\), G. Leon\(^1\), J. Belloch\(^2\), A. Lindoso\(^2\), M. Garcia-valderas\(^2\), L. Entrena\(^2\)
\(^1\)Universitat Jaume I de Castellón, Spain
\(^2\)Universidad Carlos III de Madrid, Spain
In this paper we evaluate the influence of the parallelization strategy on the proton radiation reliability of LU decomposition on a GPU-accelerated System-on-Chip. More intensive utilization of GPU resources produce larger cross-sections. |
| PD-5 | Experimental Test Approach for SEFI Categorization in Microprocessors
S. Houssany\(^1\), N. Guibbaud\(^1\), F. Miller\(^1\), T. Cheviron\(^1\), T. Colladant\(^2\)
\(^1\)Nucléïudes, France |

RADECS2021
Preliminary Technical Program - Session D
An experimental test approach to sort the different kinds of SEF in microprocessors is presented. It relies on the configuration and use of the interrupt handler combined with an external watchdog.

PD-6

Investigation and Simulation of SEL Cross Sections at Different Temperatures

E. Mrozovskaya\(^1\), P. Chubunov\(^1\), S. Iakovlev\(^2\), G. Zebrev\(^1\)

\(^1\)National Research Nuclear University MEPhI, Russian Federation
\(^2\)JSC Institute of Space Device Engineering, Russian Federation

The Single Event Latchup cross sections as functions of LET in different CMOS circuits were experimentally investigated at different temperatures. A simplified simulation method for the SEL cross section temperature dependence is proposed and validated.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| **E-1** | Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber
C. Campanella¹, A. Morana², A. Guttilla³, F. Mady³, M. Benabdesselam³, E. Marin¹, A. Boukenter¹, Y. Ouerdane¹, S. Girard⁴
¹Laboratoire Hubert Curien, France
²Laboratory Hubert Curien, France
³Université Côte d’Azur, Institut de Physique de Nice (INPHYNI), CNRS UMR 7010, France
⁴Université de Saint Etienne, France
We investigated in situ the temperature influence on the Radiation-Induced Attenuation (RIA) of an Al-doped single-mode optical fiber in the Visible and Near-InfraRed spectral regions (400 nm – 2 µm, room temperature to 300°C). |
| **E-2** | Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions
M. Aubry¹, A. Morana², A. Laurent³, L. Mescia⁴, J. Mekki⁵, N. Balcon⁵, T. Robin³, E. Marin⁶, Y. Ouerdane⁶, A. Boukenter⁶, S. Girard⁷
¹CNES / iXblue / Laboratoire Hubert Curien / Politecnico di Bari, France
²Laboratory Hubert Curien, France
³iXblue Photonics, France
⁴Politecnico di Bari, Italy
⁵CNES, France
⁶Laboratoire Hubert Curien, France
⁷Université de Saint Etienne, France
We investigated how the photobleaching phenomenon could help in reducing the radiation impact on the performances of backup Erbium Doped Fiber Amplifiers (EDFAs) and Erbium-Ytterbium Doped Fiber Amplifiers (EYDFA). |
| **E-3** | Impact of proton radiation on dark current of InAs/GaSb type-2 superlattice longwave infrared photodetector
R. Alchaar¹, C. Bataillon¹, J. Perez¹, O. Gilard¹, P. Christol¹
¹Université de Montpellier, France
Electrical characterizations of T2SL IR photodetectors under 60 MeV proton fluence up to 8x10¹¹ cm⁻² were performed. Dark current increases with increasing the DDD independently of the cut-off wavelength and the number of T2SL periods. |
| **E-4** | Dark Current Random Telegraph Signal in visible and SWIR Direct Cu-Cu bonding InGaAs Image Sensor
V. Lalucaa¹, L. Calvinhac¹, C. Virmontois¹
¹CNES, France
We investigated the dark current random telegraph signal (RTS) in a Direct Cu-Cu bonding InGaAs image sensor under proton, helium and neutron radiations. |
Irradiation effects are studied on commercial InGaAs image sensors with hybrid direct Cu-Cu bonding. Performances, dark current and random telegraph signal are measured after 62MeV proton tests with different doses; and compared to existing models.

E-5

Probing Dark-Current Random-Telegraph-Signal in a Small Pitch Vertically Pinned Photodiodes CMOS Image Sensor after Proton Irradiation

A. Antonsanti\(^1\), C. Virmontois\(^2\), J. Lauenstein\(^3\), A. Le roch\(^1\), V. Goiffon\(^1\)

\(^1\)ISAE-SUPAERO, France
\(^2\)CNES, France
\(^3\)NASA GSFC, USA

Dark-Current Random Telegraph signal is studied after proton irradiation in new scale silicon micro-volumes using a commercial CMOS Image Sensor. State-of-the-art empirical trends and new scale effects are discussed.

<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
</table>
| **PE-1** | **Ionizing radiation effects in Silicon Photonics Modulators**
M. Lalovic\(^1\), C. Scarcella\(^1\), A. Bulling\(^1\), M. Court\(^1\), S. Detraz\(^1\), L. Marcon\(^1\), L. Olantera\(^1\), T. Prousalidi\(^1\), U. Sandven\(^1\), C. Sigaud\(^1\), C. Soos\(^3\), J. Troska\(^1\)
\(^1\)CERN, Switzerland
Two popular types of Silicon Photonics modulators have been exposed to ionizing radiation up to 4 MGy. Ring Modulators are shown to be the most tolerant, showing no degradation in performance up to these levels. |
| **PE-2** | **In-Situ Optical Characterization of Bulk Optical Glasses Under Proton Exposures**
T. Allanche\(^1\), A. Morana\(^1\), P. Paillet\(^2\), O. Duhamel\(^2\), D. Lambert\(^2\), C. Hoehr\(^3\), C. Bélanger-champagne\(^3\), M. Trinczek\(^3\), C. Muller\(^1\), Y. Ouerdane\(^1\), A. Boukenter\(^1\), S. Girard\(^4\)
\(^1\)Laboratory Hubert Curien, France
\(^2\)CEA, France
\(^3\)TRIUMF, Canada
\(^4\)Université de Saint Etienne, France
We performed at TRIUMF in-situ radiation induced attenuation measurements caused by protons in bulk optical glasses and compared them with gamma-rays effect. We used GEANT4 calculations to compute the right deposited for each glass. |
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>A Soft-Error Hardened by Design Microprocessor Implemented on Bulk 12-nm FinFET CMOS
L. Clark1, A. Duvnjak2, M. Cannon3, J. Brunhaver2, S. Agarwal3, J. Manuel3, M. Marinella3

1ASU, USA
2Arizona State University, USA
3Sandia National Laboratories, USA

A radiation hardened microprocessor design implemented on a 12-nm bulk finFET CMOS process is presented. The processor uses a combination of circuit redundancy and micro-architecture for hardening.</td>
</tr>
<tr>
<td>F-2</td>
<td>Analyzing Scaled Reduced Precision Redundancy for Error Mitigation under Proton Irradiation
L. Garcia-astudillo1, A. Lindoso2, L. Entrena3, H. Martin1, M. Garcia-valderas1

1Universidad Carlos III de Madrid, Spain
2University Carlos III Madrid, Spain
3Universidad Carlos III, Spain

We propose a Scaled RPR approach for multi-stage circuits and analyze mitigation tradeoffs. FFT designs were tested with low-energy protons and fault injection. This approach achieves error mitigation with good precision, while reducing the overhead.</td>
</tr>
<tr>
<td>F-3</td>
<td>SEU Mitigation on SRAM-based FPGAs through Domains-based Isolation Design Flow
A. Portaluri1, C. De sio1, S. Azimi1, L. Sterpone1

1Politecnico di Torino, Italy

We developed a domain based isolation design flow for the mitigation of SEU effects on SRAM-based FPGAs. Fault injection experimental analysis on TMR circuits mapped on APSoC demonstrates an improvement of 44% versus traditional mitigation techniques.</td>
</tr>
<tr>
<td>F-4</td>
<td>Dual-Core Hybrid Multi-Threaded Lock-Step for Soft Error Mitigation
M. Peña fernández1, A. Serrano-cases2, A. Lindoso3, S. Cuenca-asensi2, L. Entrena4, A. Martinez_alvarez2

1Arquimea Ingeniería SLU, Spain
2University of Alicante, Spain
3University Carlos III Madrid, Spain
4Universidad Carlos III, Spain

A new hybrid soft error mitigation technique for multi-core processors, validated with low energy proton irradiation, based on multi-threaded lockstep and a custom hardware interfacing the trace port, is presented.</td>
</tr>
<tr>
<td>Paper #</td>
<td>POSTERS</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **PF-1** | **Model-based Design Code Generator Effectson Codes Reliability**
L. Tansini¹, P. Rech²
¹UFRGS, Brazil
²UFRGS, Italy
We evaluate the impact of safety-critical Model-Based Design (MBD) code generation tools in programs reliability. We compare Manual, Simulink, and Scade implementations. In general MBD tools reduce the SDC rate but increase the DUE rate. |
| **PF-2** | **Fail-Reason Capturing hardware module for a RISC-V based System on a Chip**
S. Thomet¹, S. De-paoli¹, F. Ghaffari², J. Daveau¹, V. Bertin¹, F. Abouzeid¹, O. Romain², P. Roche¹
¹STMicroelectronics, France
²ETIS Lab - ENSEA, France
This paper presents a Fail-Reason Capturing Intellectual Property. Integrated in a System-on-a-chip, it provides diagnostic information about the origin of failures thanks to the combination of trace events buffering and error detection with triggering mechanisms. |
| **PF-3** | **Machine learning as an alternative to thresholding for space radiation fault detection**
A. Dorise¹, C. Alonso¹, A. Subias¹, L. Travé-massuyès¹, L. Baczkowski², F. Vacher²
¹LAAS-CNRS, France
²CNES, France
This paper describes a new method to detect high current event caused by space radiation. Results of machine learning algorithms used on data sets created for this particular study are discussed. |
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| **G-1** | Analysis of TID testing of a statistically large quantity of parts
J. Voegtli\(^1\), R. Sharp\(^1\), L. Oswald\(^2\), N. Hong\(^2\), B. Archer\(^2\)
\(^1\)Radtest Ltd, United Kingdom
\(^2\)University of Oxford, United Kingdom

1,000 LM239N quad comparators (two manufacturers, ten date codes) have undergone TID testing to improve the definition of the optimum sample size for such a test. This paper presents a statistical analysis of the results. |
| **G-2** | FPGA Benchmarking structures dedicated to TID parametric degradation evaluation
G. Bricas\(^1\), G. Tsiligiannis\(^1\), A. Touboul\(^1\), J. Boch\(^2\), T. Maraine\(^1\), F. Saigné\(^1\)
\(^1\)University of Montpellier, France
\(^2\)Universtity of Montpellier, France

This paper presents a simple, cost-effective and efficient methodology to evaluate and compare parametric degradation of FPGA performance induced by TID. X-ray radiation test results on three FPGA families are presented, compared and discussed. |
| **G-3** | Time-of-flight SEU Cross-section Measurements for 1-800 MeV neutrons and the Soft-error Rates at 18 MeV Proton Cyclotron-driven Neutron Source
H. Iwashita\(^1\), Y. Hiroshima\(^1\), Y. Okugawa\(^1\), R. Kiuchi\(^2\), H. Sato\(^2\), T. Kamiyama\(^2\), F. Michihiro\(^2\), Y. Kiyanagi\(^3\)
\(^1\)NIPPON TELEGRAPH AND TELEPHONE CORPORATION, Japan
\(^2\)Hokkaido University, Japan
\(^3\)Nagoya University, Japan

We measured the energy-dependent neutron-induced SEU cross-section for 1-800 MeV by the time-of-flight technique. Furthermore, we calculated the soft-error rates at a neutron field from an 18 MeV proton cyclotron-driven neutron source using this cross-section. |
| **G-4** | Impact of experimental conditions for the occurrence of stuck bits in commercial SDRAM
J. Guillermin\(^1\), B. Vandevelde\(^1\), N. Chatry\(^1\), M. Poizat\(^2\)
\(^1\)TRAD, France
\(^2\)ESA, Netherlands

Different commercial SDRAM were irradiated under protons in order to assess their sensitivity to stuck bits and determine the experimental conditions which are favorable to their occurrence. |
G-5 Processor SER Estimation with ACE Bit Analysis
T. Hsu¹, D. Yang³, W. Liao², M. Itoh³, M. Hashimoto⁴, J. Liou¹

¹National Tsing Hua University, Taiwan
²Kochi University of Technology, Japan
³Tohoku University, Japan
⁴Kyoto University, Japan

We proposed to estimate the SER by considering architecturally correct execution (ACE) bits of memory elements in a processor. In an irradiation experiment, the estimated SER has a good consistency with measured SER.

G-6 High-energy hadron testing and in-orbit single-event latchup predictions and boundaries
A. Coronetti¹, R. Garciaalia³, A. Javanainen², F. Saigné³

¹CERN, Switzerland
²University of Jyväskylä, Finland
³University of Montpellier, France

Boundaries for the application of a volume equivalent LET approach to predict the SEL in-orbit rate based on the SEL cross-section retrieved from high-energy hadron testing are discussed along with upper bounds for zero events.

Paper # POSTERS

PG-1 Lot-to-lot variability TID effects on COTS BJT
F. Krimmel¹, T. Borel², A. Costantino³, M. Muschitiello¹, F. Tonicello¹, A. Pesce¹

¹ESA, Netherlands
²ESA - ESTEC, Netherlands

This work presents measurements and lot-to-lot variability analysis of the TID degradation of the gain on three COTS BJT part types (BC817, BC847 BC857)

PG-2 Testing and Validation Methodology for a Radiation Monitoring Systems for Electronics in Particle Accelerators
A. Zimmare³, R. Ferraro², J. Boch³, S. Frederic³, R. Garciaalia⁴, A. Masi⁴, S. Danzeca⁴

¹CERN, University of Montpellier, France
²CERN, France
³Univ Montpellier, France
⁴CERN, Switzerland

In this work, a methodology for the design and validation of a novel wireless battery powered radiation tolerant monitoring system in particle accelerators is presented.
<table>
<thead>
<tr>
<th>PG-3</th>
<th>Proton Cross-Sections from Heavy-Ion Data: A Review of the Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. Hansen¹, D. Czajkowski¹, B. Vermeire¹</td>
</tr>
<tr>
<td></td>
<td>¹Space Micro, USA</td>
</tr>
</tbody>
</table>

This paper reports on the calculation of proton SEU cross-sections using heavy-ion data using a numb. Calculations are checked using data on proton and heavy-ion cross-sections from the published literature.

<table>
<thead>
<tr>
<th>PG-4</th>
<th>PTA based availability analysis of the effects of blind scrubbing of UAV-UAV communication using SRAM based FPGAs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Abdelhamid¹, A. Attallah¹, M. Ammar¹, O. Ait mohamed²</td>
</tr>
<tr>
<td></td>
<td>¹Concordia University, Canada ²Concordia, Canada</td>
</tr>
</tbody>
</table>

This paper computes the worst-case failure for serial UAV communication components using SRAM FPGAs. Furthermore, our framework implements priced timed automata models to execute the blind scrubbing technique and analyze UAV-UAV communication availability at different scrubbing intervals and durations.

<table>
<thead>
<tr>
<th>PG-5</th>
<th>Methodical Approach for SEL Tolerance Confirmation of CMOS ICs at Low Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Novikova¹, A. Novikov¹, A. Pechenkin¹, V. Lukashin¹, E. Oblova¹, A. Gritsaenko¹, D. Protasov¹, A. Tararakin¹</td>
</tr>
<tr>
<td></td>
<td>¹Specialized Electronic Systems, Russian Federation</td>
</tr>
</tbody>
</table>

An approach for SEL sensitivity estimation using heavy ions at room temperature and laser facilities at both room and subzero temperatures is proposed. The results of comparison approach approbation are also presented.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| **H-1** | **Radiation Field Study in ATLAS: Timepix measurements vs Geant4 simulations**
 T. Billoud¹, B. Bergmann¹, C. Leroy², S. Menke³, S. Pospíšil¹
 ¹Institute of Experimental and Applied Physics, Czech Republic
 ²Université de Montréal, Canada
 ³Max Planck Institute for Physics, Germany
 New methods to characterize radiation in the ATLAS experiment have been developed using Timepix detectors. Measurements of total ionizing dose and charged particle fluences at different locations in the experiment are used to benchmark Geant4 simulations. |
| **H-2** | **A Framework for Global Trapped Particle Radiation Modelling**
 C. Papadimitriou¹, I. Sandberg¹, S. Aminalragia-giamini³, H. Evans², P. Jiggens²
 ¹SPARC, Greece
 ²ESA, Netherlands
 We present a unified framework, to consolidate both data and methodologies, perform comparisons under the same constraints, and produce trapped particle radiation models that can be tailored to any future user's use-case scenarios. |
| **H-3** | **Infer electron space environment along EOR mission profile from LEO measurements: application to EUTELSAT 7C**
 D. Lazaro¹, A. Sicard¹, P. Caron¹, D. Falguère¹, R. Ecoffet², D. Standaroski², N. Balcon², J. Mekki³, V. Thakur³, P. Timmerman³, R. Hernandez³, G. Schneider³, C. Keys⁴, M. Baylocq⁴
 ¹ONERA, France
 ²CNES, France
 ³EUTELSAT, France
 ⁴MAXAR, USA
 Using correlation between LEO and equatorial electron measurements, a methodology is presented and validated, with the ICARE-NG detector measurements on board EUTELSAT 7C to infer flux encountered by the spacecraft during its EOR phase. |
| **H-4** | **In-flight Measurements of Radiation Environment Observed by Eutelsat 7C (Electric Orbit Raising Satellite)**
 P. Caron¹, S. Bourdarie¹, D. Falguere¹, D. Lazaro³, P. Bourdoux², N. Balcon³, D. Standaroski², J. Mekki³, R. Ecoffet³, V. Thakur⁴, P. Timmerman⁴, R. Hernandez perez⁴, G. Schneider⁴, M. Baylocq⁵, C. Keys⁵
 ¹ONERA, France
 ²EREMS, France
 ³CNES, France
 ⁴EUTELSAT, France
 ⁵MAXAR, USA |
Measurements of particle fluxes (protons and electrons) obtained with the ICARE_NG monitor on the Eutelsat 7C orbit (Electric Orbit Raising to geostationary orbit) are presented.

H-5 Development of a Miniaturized Reference Dosimeter Payload for SmallSat Applications
C. Tscherne¹, M. Wind¹, L. Huber¹, M. Latocha¹, I. Slipukhin², S. Uznanski², R. Garciaalia², A. Hörmer³, R. Zeil³, O. Koudelka³, H. Fragner³, A. Dielacher³, C. Pirat⁵, F. Perez-lissi⁵, G. Santin⁵, P. Beck¹

¹Seibersdorf Laboratories, Austria
²CERN, Switzerland
³Graz University of Technology, Institute of Communication Networks and Satellite Communications, Austria
⁴RUAG Space GmbH, Austria
⁵ESA, Netherlands

We present the TID Reference Dosimeter and SEU Assessment System, a miniaturized dosimetry payload for SmallSats. We provide information on the concept, performance, development, and preparations for its in-orbit demonstration onboard the Austrian CubeSat PRETTY.

H-6 First results from ESA Next Generation Radiation Monitor units on-board GEO EDRS-C and LEO Sentinel-6
I. Sandberg¹, S. Aminalragia-giamini², C. Papadimitriou², R. Van gijlsweijk³, D. Heynderickx⁴, M. Heil⁵, H. Evans⁶

¹Space Applications and Research Consultancy, Greece
²Space Applications and Research Consultancy (SPARC), Greece
³Solenix-DE, Germany
⁴DH Consultancy, Belgium
⁵ESA ESOC, Germany
⁶ESA ESTEC, Netherlands

First results from ESA Next Generation Monitor on-board EDRS-C are presented. Special attention is given on the measurements of the unit during the GTO of the satellite. Evaluation and comparisons with other monitors are reported.

<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH-1</td>
<td>DESIGN OF A SPACE RADIATION MONITOR FOR A SOUNDING ROCKET AND RESULTS FROM THE FIRST TURKISH SOUNDING ROCKET FLIGHT</td>
</tr>
<tr>
<td></td>
<td>A. Albarodi¹, M. Demirköz¹, U. Kiliç¹, A. Can¹, E. Karadöller¹, D. Boztemur¹, M. Aktaş², T. Atasever²</td>
</tr>
<tr>
<td></td>
<td>¹Middle East Technical University, Turkey</td>
</tr>
<tr>
<td></td>
<td>²ROKETSAN, Turkey</td>
</tr>
</tbody>
</table>
A radiation monitor was produced and flown to an altitude of 136 km twice on top the SR0.1 rocket launched with measurement of the Pfotzer-Regener maximum and the effects of the CME at 28th October-2020

| PH-2 | **Upper envelop in GREEN model for energetic electrons**
A. Sicard\(^1\), V. Maget\(^1\), D. Lazaro\(^1\), N. Balcon\(^2\), R. Ecoffet\(^2\)
\(^1\)ONERA, France
\(^2\)CNES, France
The aim of this study is to develop a GREEN "Upper Envelop" model for electrons which takes into account the variation from one solar cycle to another. |
| PH-3 | **Investigation of Inner Belt Flux Anisotropies**
F. Enengl\(^1\), H. Evans\(^2\), R. Horne\(^3\)
\(^1\)University of Oslo, Norway
\(^2\)ESA, Netherlands
\(^3\)British Antarctic Survey, United Kingdom
We investigate pitch angle distributions in the inner radiation belt in equatorial regions. We use data from IREM (INTEGRAL mission) and PROTEL (CRRES mission). We find a dependency of flux anisotropies on the proton energy levels. |
| PH-4 | **Association of relativistic electron enhancements with VLF/ULF wave activity and seed electrons**
A. Nasi\(^1\), I. Daglis\(^1\), C. Katsavrias\(^1\), W. Li\(^2\)
\(^1\)National and Kapodistrian University of Athens, Greece
\(^2\)Boston University, USA
This study addresses the association of solar wind conditions, geomagnetic parameters, wave activity, and seed electrons, and indicates that seed electron presence, plasmasphere erosion and wave activity are conditions leading to substantial relativistic electron enhancements. |
| PH-5 | **Flight data analysis of highly miniaturized TID monitor module onboard TRISAT**
L. Gonzales\(^1\), G. Kirbiš\(^1\), D. Selčan\(^2\), I. Kramberger\(^3\)
\(^1\)Laboratory for Electronic and Information Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
\(^2\)SkyLabs d.o.o., Slovenia
This paper presents design, temperature and irradiation calibration, and in-flight data of PIN diode base TID monitor module, appropriate for use on nanosatellites missions. The module is highly miniaturized and uses COTS components. |
| PH-6 | **Space Environment & Effects Satellite (SE&ES) Mission Concept Feasibility Study**
P. Jiggens\(^1\), J. Vennekens\(^1\), P. Lux\(^1\), N. Lawton\(^1\), S. Clucas\(^1\), C. Poivey\(^1\), D. Steenan\(^1\), H. Evans\(^1\), M. Millinger\(^1\), V. Braun\(^1\), S. Mutch\(^1\), M. Khan\(^2\), M. Verhoe\(^1\), G. Salinas\(^1\), C. Terhes\(^1\), B. Sousa\(^2\), K. Benamar\(^1\), Y. Le deuff\(^1\), M. Van pelt\(^1\), M. Magazzu\(^1\), T. Wablat\(^1\), D. Lomanto\(^2\), P. Nieminen\(^1\), S. Rason\(^1\), V. Ferlet_cavrois\(^1\)
\(^1\)ESA, Netherlands
\(^2\)ESA, Germany

Initial conclusions of a feasibility study for a low-cost, short-duration mission to measure the space environment whilst simultaneously measuring effects on components, testing mitigation strategies and giving flight heritage to new detectors and components.

| PH-7 | **Development of a plastic scintillator-based active shield for the ICARE-NG radiation monitor**
M. Pinson\(^1\), P. Caron\(^1\), P. Laurent\(^2\), I. Cojocari\(^2\)
\(^1\)ONERA, France
\(^2\)CEA, France

An active shield using a scintillator and silicon photo-multipliers (SiPMs) has been developed to operate with the ICARE-NG instrument to reduce electron contamination through the sides of the detector, thus increasing energy resolution.

| PH-8 | **Analysis of the photoneutron field near the THz dump of the CLEAR accelerator at CERN with SEU measurements and simulations**
G. Lerner\(^1\), A. Coronetti\(^1\), J. Kempf\(^2\), R. Garcia alia\(^3\), F. Cerutti\(^3\), A. Gilardi\(^3\), W. Farabolini\(^4\), R. Corsini\(^1\)
\(^1\)CERN, Switzerland
\(^2\)ISAE-Supao, France
\(^3\)CERN, University of Naples Federico II, INFN Naples, Switzerland
\(^4\)CERN, CEA-Saclay, Switzerland

We study the photoneutron field near the THz dump of the CLEAR electron accelerator at CERN using FLUKA simulations and SEU measurements with SRAM memories, characterising its properties and evaluating its suitability for radiation tests.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Secondary Particles Generated by Protons in 3D NAND Flash Memories
M. Bagatin¹, S. Gerardin², A. Paccagnella¹, A. Costantino³, V. Ferlet_cavrois³, G. Santin³, M. Muschitiello³, A. Pesce³, S. Beltrami⁴

¹University of Padova, Italy
²DEI - Padova University, Italy
³ESA, Netherlands
⁴Micron Technology - Process R&D, Italy

We studied proton-induced secondary byproducts inside 3D NAND Flash memories. The results provide interesting insight into the nuclear reactions occurring in electronics, in addition to showing the usefulness of these memories for monitoring proton beams.</td>
</tr>
<tr>
<td>I-2</td>
<td>Radiation monitor extension for CMOS imaging instruments in nanosatellites
J. Florczak¹, T. Neubert¹, E. Zimmermann¹, H. Rongen¹, M. Kaufmann², F. Olschewski³, S. Van waasen¹

¹Central Institute of Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich, Germany
²Institute of Energy and Climate Research (IEK-7), Forschungszentrum Jülich, Germany
³Institute for Atmospheric and Environmental Research, University of Wuppertal, Germany
⁴Faculty of Engineering, Communication Systems (NTS), University of Duisburg-Essen, Germany

This paper describes a low-cost extension for an imaging observation instrument as a radiation monitor. Adapted image processing methods enable discrimination between measured data and sensor / radiation-specific hazards and drives mitigation techniques to improve mission lifetime.</td>
</tr>
<tr>
<td>I-3</td>
<td>Heavy-Ion Charge Yield Measurement by Floating Gate Dosimeters - Brucoli
M. Brucoli¹, S. Danzeca¹, A. Waage², A. Masi³, R. Garciaalia¹, B. Severa mas³, A. Pineda³, V. Ferlet_cavrois⁴

¹CERN, Switzerland
²Norwegian University of Science and Technology, Norway
³Sealicon Microsystems, Spain
⁴ESA, Netherlands

In this study, charge yield measurement performed by using a floating gate dosimeter for heavy-ions with LETs from 0.24 to 44 MeV•cm²•mg-1 is presented.</td>
</tr>
<tr>
<td>I-4</td>
<td>X-Ray Radioluminescence in Diversely Doped Multimode Silica-based Optical Fibers
A. Meyer¹, A. Morana¹, H. El hamzaoui², B. Capoen², G. Bouwmans², M. Bouazaoui², S. Girard¹, E. Marin¹, Y. Ouerdane¹, A. Boukenter¹</td>
</tr>
</tbody>
</table>
We investigate the radioluminescence response of optical fibers doped with Ge, P, Al, F and Ce, under 100 keV X-rays with dose rates from 0.1 to 20 Gy(SiO2)/s, and discuss their suitability for dosimetry.

Measurements of neutron fields in a wide energy range using multi-foil activation analysis
D. Chiesa¹, C. Cazzaniga², M. Nastasi³, M. Rebai¹, E. Previtali¹, G. Gorini¹, S. Lilley², C. Frost²

¹University and INFN of Milano - Bicocca, Italy
²ISIS Facility, UKRI-STFC, Rutherford Appleton Laboratory, United Kingdom

Neutron activation analysis and unfolding has been used for measurements of atmospheric and moderated neutron fields for SEE testing at a spallation source. Multiple reactions are selected to cover from thermal to 800 MeV.

Paper #	**POSTERS**
PI-1 | **Benchmark between measured and simulated radiation level data at the Mixed-Field CHARM facility at CERN**
D. Prelipcean¹, G. Lerner¹, R. García alía¹, K. Bilko¹, A. Infantino¹, D. Di francesca¹, D. Ricci¹, M. Brucoli¹, S. Danzeca¹

¹CERN, Switzerland

A benchmark for radiation monitors employed at CERN for Radiation to Electronics applications is performed at the CHARM mixed field radiation facility. Their measured values during beam operation are compared to those simulated by FLUKA.

PI-2 | **Pulsed X-ray Source Dosimetry Based On Radioluminescent Nitrogen Optical Fiber**
J. Vidalot², C. Campanella², C. Marcandella³, O. Duhamel³, A. Morana⁴, A. Boukenter⁵, Y. Ouerdane⁶, S. Girard⁵, P. Paillet⁶

¹CEA DAM / université Jean Monnet St Etienne, France
²Laboratoire Hubert Curien - Université Jean Monnet St Etienne, France
³CEA DAM, France
⁴Laboratory Hubert Curien, France
⁵Université de Saint Etienne, France
⁶CEA, France

The potential of Nitrogen-doped optical fibers for the monitoring of a pulsed high dose rate X-ray source is investigated.
| PI-3 | **Silicon solid-state detectors for monitoring high-energy accelerator mixed field radiation environments**
K. Bilko¹, R. Garcia alia¹, M. Sacristan barbero¹, D. Prelipcean¹, C. Cazzaniga², A. Coronetti¹, G. Lerner¹, W. Hajdas³
¹CERN, Switzerland
²STFC, United Kingdom
³Pau Sherrer Institute, Switzerland

The use of silicon diodes for mixed-field radiation monitoring was studied. Measurements with high-energy hadrons and simulations are presented, focusing on accelerator applications. Compared to other devices, diodes show enhanced sensitivity and energy discrimination capabilities. |
| PI-4 | **An Enhanced Sensitivity Operation Mode for Floating Gate Dosimeters**
M. Rizzo¹, M. Brucoli¹, S. Danzea¹, A. Masi¹, A. Pineda², B. Servera mas²
¹CERN, Switzerland
²Sealicon Microsystem, Spain

A new method for enhancing the sensitivity of the floating gate dosimeter (FGDOS) has been investigated. Results are presented providing the effectiveness of the enhancement and its effect on the sensitivity degradation rate. |
| PI-5 | **Design and expected performance of a new 60 MeV proton beam-line dedicated for R&D**
P. Hofverberg¹, C. Armando¹, J. Bergerot³, E. Bourrel¹, J. Dicarlo¹, G. Donadey¹, S. Dumas¹, A. Giusto¹, J. Grini³, J. Hérault¹, Y. Payan¹, C. Salicis¹, R. Trimaud¹
¹Centre Antoine Lacassagne, France

Centre Antoine Lacassagne is constructing a new 60 MeV proton beam-line for the MEDICYC cyclotron. This beam-line is dedicated for R&D activities, and will be available to external users from late 2021. |
| PI-6 | **Assessment of ICPO Proton Facility for the radiation assessment of electronic devices**
S. El mimouni¹
¹Nucleutudes, France

Thanks to its upgrades, the Curie institute Proton facility in Orsay offers new perspectives to perform continuous proton irradiations usable for electronics sensitivity assessments. To this end, the facility was characterized with known electronic devices. |
| PI-7 | **Sirius electron accelerator**
O. Cavani¹, R. Grasset¹, A. Courpron¹, A. Alessi¹
¹
Table: Session I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2ELI Beamlines, Czech Republic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2ELI Beams, Czech Republic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI-9</td>
<td>SEREEL2 - a new laser single-event effects test system with benchmark results</td>
<td>R. Sharp, A. Crombie, C. Chong</td>
<td>1Radtest Ltd, United Kingdom</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1The capabilities of the electron accelerator named SIRIUS are reported. In this facility the main irradiation parameters like beam energy, fluence (dose), flux (dose rate), temperature and atmosphere can be adapted to specific irradiation aims.

Conceptual design of a radiation test environment has been developed using numerical SIMION and FLUKA models. Concept proof generation of the electron beam accelerated to energies above 1 MeV have been performed.

This work describes a new pulsed laser test system, SEREEL2, and demonstrates its capabilities by comparison of LM124 test data with similar obtained from other systems. SEREEL2 is a highly reliable, stable and precise instrument.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>ORAL PRESENTATIONS</th>
</tr>
</thead>
</table>
| J-1 | **System-level Uncertainty Quantification from Component-level Radiation Effects**
| | G. Karsai\(^1\), N. Mahadevan\(^1\), A. Witulski\(^1\), A. Sternberg\(^1\), J. Kauppila\(^1\), R. Schrimpf\(^1\), P. Adell\(^2\), H. Schrone\(^2\), M. Meyers\(^2\), A. Daniel\(^2\)
| | \(^1\)Vanderbilt University, USA
| | \(^2\)NASA JPL, USA
| | *Impacts of transistor-level total ionizing dose are simulated on system-level parameters of a CubeSat computing board. Temperature control loop uncertainty quantification shows TID-induced changes as probability distributions of key system parameters versus mission time.* |
| J-2 | **How the Analysis of Archival Data Could Provide Helpful Information about TID Degradation**
| | P. Martín_holgado\(^1\), A. Romero-maestre\(^1\), J. De-martín-hernández\(^2\), J. González-luján\(^3\), I. Illeragómez\(^1\), Y. Jiménez-de-luna\(^2\), F. Morilla\(^4\), M. Sacristan barbero\(^5\), R. Garciaalia\(^5\), M. Dominguez\(^3\), Y. Morilla\(^6\)
| | \(^1\)Centro Nacional de Aceleradores, Spain
| | \(^2\)Universidad de Sevilla, Spain
| | \(^3\)ALTER TECHNOLOGY, Spain
| | \(^4\)National Distance Education University, Spain
| | \(^5\)CERN, Switzerland
| | \(^6\)CNA, Spain
| | *This work tries to evaluate if valuable information might be extracted from archival data to carry out the mission risk assessment despite the well-known and dramatic lot-to-lot, or even part-to-part, variation for some technologies.* |
| J-3 | **Radiation tolerant ATTM-WRTU wireless infrastructure for radiation harsh terrestrial applications**
| | A. Bernhard\(^1\), D. Selčan\(^1\), T. Rotovnik\(^1\), D. Gačnik\(^1\), I. Kramberger\(^2\), S. Danzeca\(^3\), G. Furano\(^4\)
| | \(^1\)Skylabs d.o.o., Slovenia
| | \(^2\)University of Maribor, Slovenia
| | \(^3\)CERN, Switzerland
| | \(^4\)ESA/ESTEC, Netherlands
| | *This paper provides an overview of the challenges and solutions for wireless communications for terrestrial applications in radiation harsh environments, by utilising the proven designs used in space applications where radiation tolerance is a must.* |
| J-4 | **Proposal of a Lightened Radiation Hardness Assurance Methodology for New Space**
| | F. Bezerra\(^1\), J. Mekki\(^1\), G. Augustin\(^2\), J. Guillermin\(^2\), N. Chatry\(^2\)
| | \(^1\)CNES, France

<table>
<thead>
<tr>
<th>Paper #</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-5</td>
<td>FPGA Qualification and Failure Rate estimation Methodology for LHC Environments Using Benchmarks Test Circuits</td>
<td>A. Scialdone, R. Ferraro, R. Garcia alia, L. Sterpone, S. Danzeca, A. Masi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CERN, Italy 2CERN, France 3CERN, Switzerland 4Politecnico di Torino, Italy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In this work, a novel approach for qualifying FPGAs to be used in the LHC radiation environment is proposed. The response of two different FPGAs is presented.</td>
</tr>
<tr>
<td>J-6</td>
<td>Laser-induced Transients in a GaN-on-Si Power HEMT using Si-SPA Optical Parameters</td>
<td>C. Ngom, V. Pouget, M. Zerarka, F. Coccetti, A. Touboul, M. Matmat, O. Crepel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1IRT Saint Exupery and IES-University of Montpellier, France 2IES-CNRS, France 3IRT Saint Exupery, France 4IES - university of Montpellier, France 5Airbus Toulouse, France</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This paper investigates the response of a commercial GaN-on-Si HEMT technology to laser testing parameters commonly used for single-photon absorption testing of silicon devices. Transient currents mappings and the influence of bias conditions are presented and discussed.</td>
</tr>
<tr>
<td>PJ-1</td>
<td>Estimation of Accelerated ELDRS Test Using Temperature-Switching Irradiation</td>
<td>X. Li</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1Xinjiang Technical Institute of Physics and Chemistry, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A temperature-switching irradiation (TSI) sequence based on first-principles understanding of interface-trap buildup and annealing is shown to be a conservative test for ELDRS at ultra-low dose rate in linear bipolar devices.</td>
</tr>
<tr>
<td>PJ-2</td>
<td>Searching The Damaged Area on IC Chip Using Ionization Response Mapping</td>
<td>D. Savchenkov, G. Davydov, A. Yanenko</td>
</tr>
</tbody>
</table>

2TRAD, France

In this paper, we present and discuss a lightened RHA methodology proposed to fulfill the harsh constraints in terms of cost and lead time applicable to New Space projects.
<table>
<thead>
<tr>
<th>Project</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJ-3</td>
<td>General Purpose and Neural Network Approach For Benchmarking Microcontrollers Under Radiation</td>
<td>M. Giordano¹, S. Danzeca², R. Ferraro²</td>
<td>¹ETH Zurich, CERN, Switzerland, ²CERN, Switzerland</td>
</tr>
<tr>
<td>PJ-4</td>
<td>Accurate Cross Section Estimation Using High-Level Software Fault Injection on Arm CPUs</td>
<td>P. Bodmann¹, D. Oliveira², P. Rech³</td>
<td>¹UFRGS, Brazil, ²UFPR, Brazil, ³Politecnico di Torino, Italy</td>
</tr>
</tbody>
</table>

Row 1: A method is described for localizing damaged areas on IC chip using ionization response maps. The method can provide some essential information to IC designers to help them improve its resistance to failures.

Row 2: A testing methodology for microcontrollers under radiation is proposed. General purpose benchmarks are reviewed, a neural network benchmark for IoT-devices is introduced. The testing strategy is validated on ARM M0+/M4 microcontrollers under a 200MeV-proton beam.

Row 3: We compare cross-sections predicted with software fault-injection and measured with neutron beam experiments of eight codes on two Arm devices. We improve predictions accuracy using performance and hardware utilization metrics.
<table>
<thead>
<tr>
<th>Paper #</th>
<th>POSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW-1</td>
<td>A Fully Integrated 1 MHz - 2.5 GHz Radiation-Hardened All-digital Frequency Synthesizer
M. Strackx¹, B. Van bockel², A. Karmakar³, S. Ali¹, B. Boons¹, R. Van dyck¹, H. Marien¹, Y. Cao¹, P. Leroux², J. Prinzie²
¹MAGICS Instruments, Belgium
²KU Leuven, Belgium
A fully integrated radiation-hard all-digital frequency synthesizer is presented. Single-event monitoring of the phase-locked-loop is proposed by comparing the time-to-digital-converter output with an adjustable threshold. The validated radiation tolerance reaches 1kGy TID and 62.5MeV·cm²/mg SEL/SEU.</td>
</tr>
<tr>
<td>DW-2</td>
<td>SEE Radiation Analysis And Mitigation on SAM3X8ERT Microcontroller
R. Pilia¹, R. Espinasse², C. Poulet¹, F. Bezerra², L. Gillot², B. Treuillard³, S. Dumortier⁴
¹EREMS, France
²CNES, France
³Microchip Technology, France
⁴Microchip Technology, France
This paper reports results and analysis of Single Event Effects (SEE) test campaign conducted by CNES and EREMS. The DUT used for the study was the SAM3X8ERT Microcontroller from Microchip.</td>
</tr>
<tr>
<td>DW-3</td>
<td>X-ray Irradiation Effects on DEPFET Pixel Sensors for the Belle II PiXel Detector
G. Giakoustidis¹
¹University of Bonn, Germany
A Belle II PXD DEPFET module was irradiated using a 40 kV X-ray tube. Effects of FET threshold shifts and unexpectedly increasing bulk currents were observed and investigated to doses up to 165 kGy.</td>
</tr>
<tr>
<td>DW-4</td>
<td>SEE characterization for a Quad 12-bit 1.6 GSps ADC, Digitizing up to 6.4 GSps (April 2021)
O. Bonnet¹, R. Pillard¹, S. Pelé¹
¹Teledyne e2v, France
The EV12AQ600, a quad channel 12-bit 1.6GSps ADC, was submitted to an heavy ions test, in order to evaluate its sensibility to Single Event Effect up to a LET of 67 MeV·cm²/mg.</td>
</tr>
<tr>
<td>DW-5</td>
<td>Total dose effects on large quantities of LM239N comparators from two manufacturers</td>
</tr>
<tr>
<td>Session</td>
<td>Presentation Title</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>DW-6</td>
<td>Single Event Effects Characterization of 55-65nm NOR flash for Space Applications</td>
</tr>
<tr>
<td>DW-7</td>
<td>Single Event Effects Characterization of 24-36nm COTS NAND flash for Space Applications</td>
</tr>
<tr>
<td>DW-8</td>
<td>Testing of COTS Multiplexer in the Framework of the ESA CORHA Study</td>
</tr>
<tr>
<td>DW-9</td>
<td>SAMRH71F20C RHBD 32-bits Flash Microcontroller Single Event Effects & TID evaluation</td>
</tr>
</tbody>
</table>

1. Radtest Ltd, United Kingdom
2. University of the West of England, United Kingdom

1,000 LM239N quad comparators (two manufacturers, ten date codes) have undergone TID testing to improve the definition of the optimum sample size for such a test. This paper presents the raw results of the work.

This work presents a comparative study of Single Event Effects (SEE) radiation sensitivity of two COTS (commercial off-the-shelf) 55-65nm NOR flash memories for space applications.

This work presents a comparative study of Single Event Effects (SEE) radiation sensitivity of two COTS (commercial off-the-shelf) 24-36nm NAND flash memories for space applications.

We present TID radiation response test data of commercial multiplexers as part of the ESA CORHA study that investigates relevant COTS components and finally aims to formulate an test-data based ad-hoc RHA approach for COTS.
This paper reports the results of Single Event Effects (SEE) and Total Ionizing Dose (TID) test campaigns conducted by Microchip on the ARM® Cortex® M7 SAMRH71F20C Microcontroller

DW-10

Updated Radiation Performance of Intersil’s Commercial Space Plastic Parts
W. Newman¹, N. Van vonno¹, S. Singer², P. Lawrence², E. Thomson²
¹Renesas Electronics America, USA
²Renesas, USA

The ISL71xxxM/SLHM family of radiation-tolerant and radiation-hardened plastic-package ICs is designed to support the emerging constellations of small satellites that will provide high-speed internet connections to millions of users in communities, governments, and businesses worldwide.

DW-11

Non-Volatile Memory Destructive Failure in Standby Mode
P. Wang¹, P. Kohler¹, A. Bosser¹, L. Thibaut², G. Duran cardenas², L. Frederic²
¹3D PLUS, France
²Alter Technology France, France

This paper presents the results of a 256Mb SPI/QSPI non-volatile memory (NVM) SEE characterization. Destructive failures were observed during SEE tests, and the DUT shows sensitivity especially in standby mode instead of Erase/Write/Read modes.

DW-12

TID Characterization of 24-45nm COTS NAND flash for Space Applications
B. Tanios¹, O. Perrotin¹, B. Forgerit¹, F. Tilhac¹, F. Guerre¹, C. Poivey²
¹Alter Technology TÜV Nord France, France
²ESA, Netherlands

This work presents a comparative study of Total Ionizing Dose (TID) radiation sensitivity of five COTS (commercial off-the-shelf) 24-45nm NAND flash memories for space applications.

DW-13

VSC8541RT Single Port Gigabit Ethernet PHY Single Event Effects and Total Ionizing Dose performances
B. Treuillard¹, S. Furic¹, G. Bourg cazan¹, E. Leduc², P. Fournier³
¹Microchip Technology Nantes, France
²Microchip A & D, France
³Microchip Technology Rousset, France

This paper reports the results of Single Event Effects (SEE) and Total Ionizing Dose (TID) test campaigns conducted by Microchip on VSC8541RT Single Port Gigabit Ethernet PHY.

DW-14

The SEE Test Results of the different analog devices
A. Kalashnikova¹, T. Maksimenko², A. Koziukov³, P. Chubunov², M. Kuznetsov², R.
Mangushev2, A. Drokin2, K. Bu-khasan2, N. Bondarenko2, M. Vyrostkov2, A. Nilov2, M. Maltseva2, N. Il'yin2, A. Kukharev2

1Branch of Joint - Stock Company “United Rocket and Space Corporation”- “Institute of Space Device Engineering” (Branch of JSC URSC - ISDE), Russian Federation
2Branch of Joint - Stock Company “United Rocket and Space Corporation”- “Institute of Space Device Engineering” (Branch of JSC URSC - ISDE), Russian Federation
3Branch of JSC URSC - ISDE, Russian Federation

The article presents the results of singlet event effect (SEE) testing samples of various representatives of analog microcircuits: operational amplifiers (OpAmp), relays, voltage regulators and transistor.

<table>
<thead>
<tr>
<th>DW-15</th>
<th>Heavy Ion Test Results for Microcircuits of the SNJ54 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Koziukov1, P. Chubunov1, S. Iakovlev1, L. Arutunyan1, M. Shekhovtsov1, A. Riabtseva1</td>
</tr>
</tbody>
</table>

1Branch of JSC “URSC” - “ISDE”, Russian Federation

The article presents the test results of digital microcircuits of the SNJ54 series for resistance to heavy ions obtained on the test means to monitor resistance to heavy ion space.